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Abstract. In this work we present an analysis of a spatially non homogeneous ultimatum game. By con-
sidering different underlying topologies as substrates on top of which the game takes place we obtain
nontrivial behaviors for the evolution of the strategies of the players. We analyze separately the effect of
the size of the neighborhood and the spatial structure. Whereas this last effect is the most significant one,
we show that even for disordered networks and provided the neighborhood of each site is small, the results
can be significantly different from those obtained in the case of fully connected networks.

PACS. 89.65.-s Social and economic systems – 89.65.Gh Economics; econophysics, financial markets,
business and management – 89.75.Hc Networks and genealogical trees

1 Introduction

In the last years, Game Theory has been recognized as
a powerful alternative way of examining economics [1,2].
The models analyzed under this scheme consist of sets of
agents that play a certain game and a set of the strate-
gies that can be used by the agents. Game theory can
be understood as a mathematical tool for analyzing and
predicting human behavior in strategic situations. In the
last years many physicists have directed their attention
towards the analysis of several market games [3–8]

The equilibrium analysis assumes that all the players
display strategic thinking and optimizing behavior. How-
ever, it is widely accepted, and has been experimentally
shown, that not every player behaves in a rational way.
The realization of this difference led to the creation of Be-
havioral Economics, a branch of economics closely related
to the study of the behavior of economical agents rather
than economical quantities [9,10]. One of the most inter-
esting results obtained in this field is the observation that
real individuals do not behave according to the classical
assumptions of homo economicus [11], a completely ratio-
nal individual who seeks to optimize his utilities with the
least possible cost.

The gap between economics and Game Theory has
been bridged by Evolutionary Game Theory, which takes
into account the possibility that the strategies of the
agents can change following some evolutionary rule. Evo-
lutionary Game Theory has succeeded in explaining
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how cooperation can arise in populations playing non-
cooperative games, i.e. in games where cooperation is pos-
sible but is not favored. Included in the group of non-
cooperative games with economical interest we find the
Prisoner’s Dilemma, the Ultimatum Game, bargaining
games, etc.

In the present work we focus on some aspects related to
the Ultimatum Game. The essential features of this game
can be very easily summarized. Two individuals are told
that they have the opportunity to split a given amount
of externally provided money. One of the individuals is
randomly chosen as the first player and to assume the
role of the offerer. He/she has to make a one time offer,
consisting of indicating how much of the total amount of
money is to be given to each player. The other player, as
the respondent, has the opportunity to either accept or
reject this offer. If the offer is rejected both get nothing.
If the offer is accepted, each one gets the accorded part.
Both participants are aware of the rules of the game before
making any decision.

The Ultimatum Game is a particular case of bargain-
ing. Game theory predicts that the best strategy is to offer
an unequal split favoring the offerer. In [12] it is shown
that if ε is the lowest allowed partition and given that a
rational responder will prefer a small amount to nothing,
the best strategy for the offerer is to give just ε and take
the rest. But studies made by behavioral economists have
shown that most of the time real individuals tend to reject
unequal offers. The first studies are described in [13]. Since
then there have been extensive studies on the behaviors
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of the players under different circumstances and within
a wide spectra of cultural environments. Their results do
not lead to a unique behavioral profile, and in particular
they show clearly that human players usually do not act
as the homo economicus [13–20].

It has also been shown [21] that inequity aversion may
not be a exclusively human feature: brown capuchin mon-
keys (Cebus Capella) seem to respond negatively to un-
equal reward distribution in exchanges with a human ex-
perimenter.

In order to explore the ultimatum game beyond the
“static” formulation by Rubinstein [12], some authors
have analyzed the evolutionary ultimatum game [22–26].
In these works it is shown that when the agents are
placed in an ordered network (and therefore constrained
to play with, and imitate, only their neighbors) the evo-
lution takes the system to more equitable strategies than
predicted by the rational players hypothesis. One natural
question that arises is whether this effect is only due to
the spatial distribution of the players or it is also due to
the fact that the players are restricted to play and imitate
only a very small number of agents.

One of the goals of this work is to stress the impor-
tant role played by the underlying topology. Notice that
ordered networks differ from the fully mixed case not only
in that agents are connected to a very small set of other
agents, but also in the fact that the clustering is much
smaller, i.e. the neighbors of a site are not necessarily con-
nected among themselves. In this work we analyze these
features separately to understand the effect they have on
the evolution of strategies.

We show that some field results can be in correspon-
dence with our findings. For example, in [16] it is shown
that the behavior of players cannot be unequivocally asso-
ciated either with the rational or the altruistic attitudes.
On the contrary, experiments across different cultural en-
vironments show that it is spread over a wide spectra of
possibilities. This result was mentioned but not discussed
in previous works. At the same time we establish interest-
ing relationships between the outcome of an evolutionary
situation and the underlying social topology.

2 The model

The model consists of a set of N players located on a
network, which defines the neighborhood of each player,
i.e. the subset of the whole population that is available for
interaction. Each player i is assigned a playing strategy
that consists of a pair of real numbers (oi, ai) within the
interval [0, 1]. An interaction consists in taking a pair of
linked players, and let them play twice, alternating the
roles of offerer and respondent. oi is the offer of player
i when acting as offerer, and ai is the smallest amount i
accepts when acting as respondent. The total sum allotted
in each game is 1.

The temporal evolution of the game is organized into
generations. In each generation, each player interacts with

all of its neighbors. The payoff of i when playing with j,
wij is

wij =

⎧
⎪⎨

⎪⎩

1 − oi + oj if oi ≥ aj and oj ≥ ai

1 − oi if oi ≥ aj and oj < ai

oj if oi < aj and oj ≥ ai

0 if oi < aj and oj < ai.

(1)

After each agent has played with its entire neighborhood
we compute the cumulative payoff of each individual and
consider that a game generation has concluded. It is at
this moment that the evolutionary dynamics takes place.
In the next generation all the players are replaced by their
offspring. The strategy of a site is updated by choosing
one strategy in the neighborhood (including the site to
be updated) with probability equal to the ratio between
the individual cumulative payoff and the total cumulative
payoff of all the sites in the neighborhood.

This warrants a competition process in which only the
fittest or more successful strategies survive. In the next
generation, a new breed of players occupies the sites of
the network, with reset payoffs but with strategies deter-
mined by the outcome of the previous generation. The fact
that a strategy was successful in a given generation does
not guarantee its success in the next one, with a different
distribution of strategies.

To avoid the system to get stuck in spurious local min-
ima, we add some noise in the form of small mutations, as-
sociated to a mutation rate ε [23]. In this work we maintain
ε = 10−3. Once the process of reproduction is finished by
determining which player will leave its offspring in which
sites, the descendants copy their ancestor strategy with a
small variation: if the individual that formerly occupied
the site m leaves a descendant in the place l, the strategy
of the new occupant of the site l is then

(ol(t + 1), al(t + 1)) = (om(t) + δo, am(t) + δa) (2)

with δ ∈ [−ε, ε] a real random number.
We have performed simulations in three different

topologies: ordered, disordered, and k-Small World Net-
works (k-SWN), to interpolate smoothly between the or-
dered and disordered topologies. The ordered topology
consists of nodes on a ring, joined to their first k neighbors
to each side. In this work we take k > 1. These networks
are highly clustered: many neighbors of each node are con-
nected among themselves, forming triangles. This charac-
teristic is quantified by the clustering coefficient which is
the number of triangles centered on each node divided by
the number of pairs of neighbors, averaged over all the
nodes. The disordered topology we consider is a random
graph where all the nodes have the same degree 2k (also
called regular random graphs). The third topology is a
variation of the small world networks of Watts & Strogatz
(WS) [27].

The algorithm of construction of WS networks is as
follows: starting from an ordered network, the ring is tra-
versed and with probability p′ each link is rewired to a ran-
dom node. Double and self links are not allowed. Though
the algorithm conserves the total number of links, at the
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end of the process the degree of each node is statistically
characterized by a binomial distribution, for p′ > 1. As we
are interested in filtering any effect related to changes in
the size of the neighborhoods we modify the original WS
algorithm to constrain the resulting networks to a subfam-
ily with a delta shaped degree distribution. We call this
family of networks the k-Small World Networks (k-SWN),
where 2k indicates the degree of the nodes. We start again
from an ordered network and define a disorder parameter
p that plays a role analogous to that of p′ in WS net-
works. To proceed with the reconnection of the network
we choose two couples of linked nodes (or partners) rather
than one. With probability p we decide whether to switch
or not the partners in order to get two new pairs of cou-
pled links. In this way all the nodes preserve their degree
while the process of reconnection assures the introduction
of a certain degree of disorder. It must be stressed that
the dependence with p of the clustering coefficient and
path length is qualitatively similar to what is observed as
a function of p′ in SWNs.

3 Numerical results

The simulations were done on networks with 103–104 indi-
viduals and different values of k. Defining a generation as
the situation when each player plays twice (as offerer and
as respondent) with all his/her neighbors we performed
time averages over the last 106 generations of each real-
ization, after a transient equally long. At the same time,
the time averaged results for a given set of parameters p
and k were obtained after averaging over 100 individual
cases.

We begin by showing the comparison (see Fig. 1) be-
tween the strategies attained by agents placed in a ring,
each one connected to its first k neighbors, and the ones
attained when playing in a regular random graph (i.e. a
graph where each node is connected to exactly k random
neighbors). These last networks have a vanishing cluster-
ing coefficient, which means that, locally, they are isomor-
phic to trees. On the other hand, the networks defined on
the ring have a clustering that increases with k: c = 3

4
k−2
k−1 .

It is interesting to see that evolution in a completely dis-
ordered network can also lead to strategies that are rather
far from the rational prediction, provided that the num-
ber of neighbors is small enough. On the other hand, a
small increase in the number of neighbors leads to strate-
gies much closer to the rational prediction. This effect is
much less pronounced in the case of the ring networks but
it must be borne in mind that clustering is also increas-
ing in this case. The effect of clustering can be grasped by
comparing the curves for fixed values of k: larger clustering
seems to lead to the evolution of more equitable strategies.
To analyze this in more detail we have performed simula-
tions of the Ultimatum Game in k-small World Networks.

As we vary the disorder parameter p we observe a
monotonic smooth behavior of the values of 〈o〉. In Fig-
ure 2 we show the mean values of 〈o〉 as a function of the
disorder parameter p (〈a〉 is not shown, as its behavior is

Fig. 1. Asymptotic mean thresholds 〈o〉 (full symbols) and
〈a〉 (empty symbols) for agents in a k-small world network,
as a function of the node degree k. Squares: ordered Network,
Circles: regular Random Network.

Fig. 2. Asymptotic mean thresholds 〈o〉 (full symbols) and
〈a〉 (empty symbols) for agents in a k-small world network, as
a function of the disorder parameter of the network. Squares:
k = 2, Circles: k = 3.

very similar). The behavior of this quantity looks quali-
tatively very similar to that of the clustering coefficient.
To stress this fact we have plotted 〈o〉 vs. C in Figure 3,
where an almost linear dependence can be observed.

4 Invasion analysis

When studying the dynamics of systems embedded in or-
dered or semiordered networks it is difficult to go beyond
numerical simulations. Direct analytical approaches usu-
ally become impossibly complicated in the presence of
short loops. For these reasons people have used indirect
approaches with the hope of capturing the essence of the
problem.

One possibility to study the asymptotic state is to
calculate the strategy that a cluster of mutants should
have to invade an homogeneous population. The behav-
ior of this as the topology is changed has been shown
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Fig. 3. Asymptotic mean thresholds 〈o〉 for agents in a k-small
world network, as a function of the clustering of the network.
Squares: k = 2, Circles: k = 3.

to give some clues about the asymptotic state of differ-
ent systems [29,30]. We have performed these calculations
for the limit cases of a completely ordered and a com-
pletely disordered network. The calculation is analogous
to the one in [22], where only the conditions for invasion
of clusters of two and three sites were considered, for the
ordered network with k = 2. In an infinite population
of individuals with offer and acceptance thresholds set
to ob and ab, a cluster of n mutants is introduced, with
offer and acceptance thresholds set to om and am with
om > am > ob > ab. For this initial state we derive the
condition o < oc(k) that must be satisfied for the mutants
to leave more than n descendants in the next generation
(this is only a first approximation, because mutant ex-
pansion might not continue indefinitely [30]). Notice that
for a homogeneous population, with mutation allowed, the
average thresholds should be bigger that oc. Otherwise a
mutation could generate a mutant cluster that would in-
vade the population, thus raising the average threshold.

The behavior of oc(k) for clusters of two and three
sites, in ordered and completely disordered networks is
shown in Figure 4. The decrease of both curves with k
can be understood by considering what happens when
a mutant has a given value of 〈o〉. If 〈o〉 is maintained,
two things happen when k is decreased, First, the mu-
tant has now to compete with less neighbors. Secondly,
even though its absolute payoff decreases, its relative pay-
off (respect to their neighbors) in fact increases: for each
‘vanished’ neighbor the mutant loses 1 − 〈o〉 whereas all
the other agents lose 1. Therefore, if 〈o〉 favored invasion
by the mutant for the case with k neighbors, the situation
is even better for the mutant if the number of neighbors is
decreased, which in turn implies that the critical 〈o〉 must
necessarily be higher. Another interesting fact is the ex-
isting relationship between both curves for the same value
of k. In this case the clusters have the same number of
connections, but they differ in how these connections are

Fig. 4. Critical invasion thresholds as a function of the degree
of the nodes and for a cluster size 2 (full symbols) and 3 (empty
symbols). Squares: ordered Network, Circles: regular Random
Network.

arranged: in the completely disordered network all these
connections go to different agents, whereas in the ordered
network the two members of it are connected mostly to
the same sites (i.e. there are more triangles). Thus, the
figure shows that acting cooperatively leads to better re-
productive chances, and this is favored in networks with
larger clustering coefficient. Notice that the average pay-
off of the agents is the same in the two cases. It is their
relative fitness that changes.

The same features are present when one compares the
invasion thresholds for larger compact clusters, if their size
does not depend on k.

5 Conclusions

The rationale of the present work was to reveal the in-
fluence of the underlying topology on the outcome of an
evolutionary Ultimatum Game. Though previous works
have already addressed this aspect, some interesting de-
tails could only be unveiled through a more detailed anal-
ysis. This task was achieved by making numerical simula-
tions on several types of networks, with different amount
of disorder and degree distribution. We have observed that
both the increase of the neighborhood size and the increase
of the degree of disorder have a similar effect, leading a
population of players towards responses with increasing
levels of “rationality”. As the increment of the size of the
neighborhood makes a given network converge towards
a fully connected graph and thus being associated to a
mean field situation, the effect of the increase on the dis-
order was not clear up to now. We have shown the tran-
sition in the behavior of the population when the under-
lying topology varies continuously between the extremes
already studied in the literature.

The behavior of the asymptotic state of the system as
the clustering of the underlying network changes can be
compared to that of some games where the evolution of co-
operation is analyzed. Individuals with fair strategies can
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Fig. 5. Temporal behavior of the thresholds 〈o〉 (full) and 〈a〉
(dotted) in the fully connected network. Single run.

survive provided that they are surrounded by neighbors
with similar behavior. A highly clustered network favors
this necessary condition and the system naturally evolves
to a situation when the mean level of offers is around 50%.
On the contrary, when the underlying network presents a
low level of clustering, the mean values go to values close
to zero. In this case, the transient shows first a diminishing
acceptance threshold, that finally drives the offer value to
lower values as well, as shown in Figure 5. If we identify
the fair strategies as being more cooperative than those
with lower offers the results can be interpreted within the
frame of the phenomenology of other cooperative games
where the spatial distribution plays the same role as here
and leads to the same qualitative results.

So far, we have made a description and analysis of
the obtained results. After analyzing our results we are
inclined to propose an explanation for the emergence of
a collective behavior that sets a discrepancy between the
theoretical predictions and field results in relation to the
ultimatum game. Furthermore, the experimental results
show a wide spectra of behaviors that could not be eas-
ily explained or unified within a suitable frame. In this
work we study an evolutionary process that changes the
strategies of the populations and can lead to the survival
of the fittest behaviors. The final composition of the evo-
lutionary strategies of the population seems to depend on
the social underlying architecture. This could explain, in
principle, the fact that people with different social orga-
nization display different collective behaviors. The model
succeeds in qualitatively reproducing the complexity of
the observed experimental results based on very simple
assumptions and interaction rules. Summarizing we show
that the whole spectra of observed behaviors can be re-
produced by considering an evolutionary process that to-
gether with the subtleties of the social organization shapes
the behavior of different people.

In this work we have maintained the mutation rate ε
constant because we were focused on the effect induced
in the behavior of the system by the topological features
of the underlying networks. In previous works [31,32], the

authors studied the effect of the noise on the outcome of
a spatial prisoner dilemma, finding interesting results. As
in our case, the mutation rate can be associated to a sort
of noise, it would be interesting to analyze the effect of
varying ε to see whether similar features appear in the
Ultimatum Game. In the same works [31,32] the authors
studied the change in the behavior of the studied system
when changing some global properties of the underlying
networks, namely the percolation of triangles formed by
links of connected individuals [33]. As in this work we
have only analyzed the role of local topological changes by
considering networks with different clustering coefficients,
it would be interesting to analyze what happens when
the Ultimatum Game is played in netwrok where triangle
percolation is present (e.g. Kagome lattices) or absent (e.g.
square lattices).

Appendix

We consider a population of agents with offer and accep-
tance thresholds set to p0 and q0 < p0, with two connected
mutants with thresholds pm > qm > p0 > q0. Agents can
be connected to none, one, or both mutants, depending
on the topology of the network. Their respective average
payoff after a round of games will be:

f0(k) = 2k

f1(k) = 2k − 1 + p

f2(k) = 2k − 2 + 2p (3)

where 2k is the number of neighbors. For the mutants, the
payoff is:

fm(k) = 1 + (2k − 1)(1 − p). (4)

At the next generation, the new strategy for each site is
chosen randomly among its own and its neighbors strate-
gies, with a probability proportional to their respective
average payoffs. Thus, the expected number of mutants at
the next generation is:

m(k) =
4fm(k)

2fm(k) + (2k − 1)f1(k)

+
(2k − 1)fm(k)

fm(k) + f1(k) + (2k − 1)f0(k)
(5)

for the disordered case and

m(k) = 2
2fm(k)

2fm(k) + 2(k − 1)f2(k) + f1(k)

+
k−1∑

j=1

2fm(k)
2fm(k) + (2k − 2 − j)f2(k) + f1(k) + jf0(k)

+
fm(k)

fm(k) + (k − 1)f2(k) + f1(k) + kf0(k)
(6)

for the completely ordered case. The invasion condition
for p can then be extracted from the equation m(k) > 2.
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